Friday, August 31, 2012
Mutual Repression Enhances the Steepness and Precision of Gene Expression Boundaries
by Thomas R. Sokolowski, Thorsten Erdmann, Pieter Rein ten Wolde
Embryonic development is driven by spatial patterns of gene expression that determine the fate of each cell in the embryo. While gene expression is often highly erratic, embryonic development is usually exceedingly precise. In particular, gene expression boundaries are robust not only against intra-embryonic fluctuations such as noise in gene expression and protein diffusion, but also against embryo-to-embryo variations in the morphogen gradients, which provide positional information to the differentiating cells. How development is robust against intra- and inter-embryonic variations is not understood. A common motif in the gene regulation networks that control embryonic development is mutual repression between pairs of genes. To assess the role of mutual repression in the robust formation of gene expression patterns, we have performed large-scale stochastic simulations of a minimal model of two mutually repressing gap genes in Drosophila, hunchback (hb) and knirps (kni). Our model includes not only mutual repression between hb and kni, but also the stochastic and cooperative activation of hb by the anterior morphogen Bicoid (Bcd) and of kni by the posterior morphogen Caudal (Cad), as well as the diffusion of Hb and Kni between neighboring nuclei. Our analysis reveals that mutual repression can markedly increase the steepness and precision of the gap gene expression boundaries. In contrast to other mechanisms such as spatial averaging and cooperative gene activation, mutual repression thus allows for gene-expression boundaries that are both steep and precise. Moreover, mutual repression dramatically enhances their robustness against embryo-to-embryo variations in the morphogen levels. Finally, our simulations reveal that diffusion of the gap proteins plays a critical role not only in reducing the width of the gap gene expression boundaries via the mechanism of spatial averaging, but also in repairing patterning errors that could arise because of the bistability induced by mutual repression.
Self-Organized Shuttling: Generating Sharp Dorsoventral Polarity in the Early Drosophila Embryo
Morphogen gradients pattern tissues and organs during development. When morphogen production is spatially restricted, diffusion and degradation are sufficient to generate sharp concentration gradi....
Thursday, August 30, 2012
Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns
Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns
Nature Methods 9, 929 (2012).
doi:10.1038/nmeth1566-929a
Author: Stefanie Hampel, Phuong Chung, Claire E McKellar, Donald Hall, Loren L Looger & Julie H Simpson
Tuesday, August 28, 2012
Ectopic assembly of heterochromatin in Drosophila [Genetics]
Sost-distal enhancer deletion [Genetics]
Friday, August 24, 2012
Modeling of Gap Gene Expression in Drosophila Kruppel Mutants
by Konstantin Kozlov, Svetlana Surkova, Ekaterina Myasnikova, John Reinitz, Maria Samsonova
The segmentation gene network in Drosophila embryo solves the fundamental problem of embryonic patterning: how to establish a periodic pattern of gene expression, which determines both the positions and the identities of body segments. The gap gene network constitutes the first zygotic regulatory tier in this process. Here we have applied the systems-level approach to investigate the regulatory effect of gap gene Kruppel (Kr) on segmentation gene expression. We acquired a large dataset on the expression of gap genes in Kr null mutants and demonstrated that the expression levels of these genes are significantly reduced in the second half of cycle 14A. To explain this novel biological result we applied the gene circuit method which extracts regulatory information from spatial gene expression data. Previous attempts to use this formalism to correctly and quantitatively reproduce gap gene expression in mutants for a trunk gap gene failed, therefore here we constructed a revised model and showed that it correctly reproduces the expression patterns of gap genes in Kr null mutants. We found that the remarkable alteration of gap gene expression patterns in Kr mutants can be explained by the dynamic decrease of activating effect of Cad on a target gene and exclusion of Kr gene from the complex network of gap gene interactions, that makes it possible for other interactions, in particular, between hb and gt, to come into effect. The successful modeling of the quantitative aspects of gap gene expression in mutant for the trunk gap gene Kr is a significant achievement of this work. This result also clearly indicates that the oversimplified representation of transcriptional regulation in the previous models is one of the reasons for unsuccessful attempts of mutant simulations.
Thursday, August 23, 2012
[Report] Cis-Acting Transcriptional Repression Establishes a Sharp Boundary in Chordate Embryos
Authors: Kaoru S. Imai, Yutaka Daido, Takehiro G. Kusakabe, Yutaka Satou
Wednesday, August 22, 2012
Rate of de novo mutations and the importance of father’s age to disease risk
Rate of de novo mutations and the importance of father’s age to disease risk
Nature 488, 7412 (2012). doi:10.1038/nature11396
Authors: Augustine Kong, Michael L. Frigge, Gisli Masson, Soren Besenbacher, Patrick Sulem, Gisli Magnusson, Sigurjon A. Gudjonsson, Asgeir Sigurdsson, Aslaug Jonasdottir, Adalbjorg Jonasdottir, Wendy S. W. Wong, Gunnar Sigurdsson, G. Bragi Walters, Stacy Steinberg, Hannes Helgason, Gudmar Thorleifsson, Daniel F. Gudbjartsson, Agnar Helgason, Olafur Th. Magnusson, Unnur Thorsteinsdottir & Kari Stefansson
Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. Here we conduct a study of genome-wide mutation rates by sequencing the entire genomes of 78 Icelandic parent–offspring trios at high
Chromatin organization is a major influence on regional mutation rates in human cancer cells
Chromatin organization is a major influence on regional mutation rates in human cancer cells
Nature 488, 7412 (2012). doi:10.1038/nature11273
Authors: Benjamin Schuster-Böckler & Ben Lehner
Cancer genome sequencing provides the first direct information on how mutation rates vary across the human genome in somatic cells. Testing diverse genetic and epigenetic features, here we show that mutation rates in cancer genomes are strikingly related to chromatin organization. Indeed, at the megabase scale, a single feature—levels of the heterochromatin-associated histone modification H3K9me3—can account for more than 40% of mutation-rate variation, and a combination of features can account for more than 55%. The strong association between mutation rates and chromatin organization is upheld in samples from different tissues and for different mutation types. This suggests that the arrangement of the genome into heterochromatin- and euchromatin-like domains is a dominant influence on regional mutation-rate variation in human somatic cells.
i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules
The field of regulatory genomics today is characterized by the generation of high-throughput data sets that capture genome-wide transcription factor (TF) binding, histone modifications, or DNAseI hypersensitive regions across many cell types and conditions. In this context, a critical question is how to make optimal use of these publicly available datasets when studying transcriptional regulation. Here, we address this question in Drosophila melanogaster for which a large number of high-throughput regulatory datasets are available. We developed i-cisTarget (where the ‘i’ stands for integrative), for the first time enabling the discovery of different types of enriched ‘regulatory features’ in a set of co-regulated sequences in one analysis, being either TF motifs or ‘in vivo’ chromatin features, or combinations thereof. We have validated our approach on 15 co-expressed gene sets, 21 ChIP data sets, 628 curated gene sets and multiple individual case studies, and show that meaningful regulatory features can be confidently discovered; that bona fide enhancers can be identified, both by in vivo events and by TF motifs; and that combinations of in vivo events and TF motifs further increase the performance of enhancer prediction.
Tuesday, August 21, 2012
Inducible genetic system for the axolotl [Developmental Biology]
Monday, August 20, 2012
Dissecting sources of quantitative gene expression pattern divergence between Drosophila species
- The logic of the transcriptional circuit controlling expression of the embryonic hunchback posterior stripe is highly conserved between three Drosophila species (D. melanogaster, D. yakuba, and D. pseudoobscura), despite observed differences in the hunchback posterior stripe expression pattern.
- Quantitative expression differences in the hunchback posterior stripe are largely, but not entirely, due to changes in the expression patterns of upstream regulators.
- The set of orthologous cis-regulatory elements (CREs) underlying this circuit direct similar expression patterns in concordance with previous qualitative studies; however, the expression patterns they direct are quantitatively distinct.
- These results indicate that small-scale sequence changes in CREs can impact their function and has broad implications for understanding the importance of transcription factor binding site architecture in CRE function.
Friday, August 17, 2012
Transcription factors: from enhancer binding to developmental control
Transcription factors: from enhancer binding to developmental control
Nature Reviews Genetics 13, 613 (2012).
doi:10.1038/nrg3207
Authors: François Spitz & Eileen E. M. Furlong
Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor
Splicing: Waiting to be spliced
Splicing: Waiting to be spliced
Nature Reviews Genetics 13, 599 (2012).
doi:10.1038/nrg3310
Author: Hannah Stower
The relevance of co-transcriptional versus post-transcriptional splicing of transcripts is debated. In a recent RNA sequencing (RNA-seq) study of the human inflammatory response, the authors found evidence for the widespread association of incompletely spliced transcripts with chromatin. Thus, this study supports post-transcriptional rather than co-transcriptional
A Genome-Scale Resource for In Vivo Tag-Based Protein Function Exploration in C. elegans
Tissue-Specific Mitotic Bookmarking by Hematopoietic Transcription Factor GATA1
Wednesday, August 15, 2012
Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus [Research Papers]
Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1. We report the systematic functional dissection of the MEA cis-regulatory region, resulting in the identification of a 200-bp fragment that is necessary and sufficient to mediate MEA activation and imprinted expression, thus containing the imprinting control region (ICR). Notably, imprinted MEA expression mediated by this ICR is independent of DME and MET1, consistent with the lack of any significant DNA methylation in this region. This is the first example of an ICR without differential DNA methylation, suggesting that factors other than DME and MET1 are required for imprinting at the MEA locus.
Friday, August 10, 2012
Genome-wide and Caste-Specific DNA Methylomes of the Ants Camponotus floridanus and Harpegnathos saltator
A Carboniferous Non-Onychophoran Lobopodian Reveals Long-Term Survival of a Cambrian Morphotype
Thursday, August 9, 2012
[Report] Drosophila Dosage Compensation Involves Enhanced Pol II Recruitment to Male X-Linked Promoters
Authors: Thomas Conrad, Florence M. G. Cavalli, Juan M. Vaquerizas, Nicholas M. Luscombe, Asifa Akhtar
Tuesday, August 7, 2012
Anterior-posterior differences in HoxD chromatin topology in limb development [RESEARCH ARTICLES]
A late phase of HoxD activation is crucial for the patterning and growth of distal structures across the anterior-posterior (A-P) limb axis of mammals. Polycomb complexes and chromatin compaction have been shown to regulate Hox loci along the main body axis in embryonic development, but the extent to which they have a role in limb-specific HoxD expression, an evolutionary adaptation defined by the activity of distal enhancer elements that drive expression of 5' Hoxd genes, has yet to be fully elucidated. We reveal two levels of chromatin topology that differentiate distal limb A-P HoxD activity. Using both immortalised cell lines derived from posterior and anterior regions of distal E10.5 mouse limb buds, and analysis in E10.5 dissected limb buds themselves, we show that there is a loss of polycomb-catalysed H3K27me3 histone modification and a chromatin decompaction over HoxD in the distal posterior limb compared with anterior. Moreover, we show that the global control region (GCR) long-range enhancer spatially colocalises with the 5' HoxD genomic region specifically in the distal posterior limb. This is consistent with the formation of a chromatin loop between 5' HoxD and the GCR regulatory module at the time and place of distal limb bud development when the GCR participates in initiating Hoxd gene quantitative collinearity and Hoxd13 expression. This is the first example of A-P differences in chromatin compaction and chromatin looping in the development of the mammalian secondary body axis (limb).
Coordinating genome expression with cell size
Human Developmental Enhancers Conserved between Deuterostomes and Protostomes
by Shoa L. Clarke, Julia E. VanderMeer, Aaron M. Wenger, Bruce T. Schaar, Nadav Ahituv, Gill Bejerano
The identification of homologies, whether morphological, molecular, or genetic, is fundamental to our understanding of common biological principles. Homologies bridging the great divide between deuterostomes and protostomes have served as the basis for current models of animal evolution and development. It is now appreciated that these two clades share a common developmental toolkit consisting of conserved transcription factors and signaling pathways. These patterning genes sometimes show common expression patterns and genetic interactions, suggesting the existence of similar or even conserved regulatory apparatus. However, previous studies have found no regulatory sequence conserved between deuterostomes and protostomes. Here we describe the first such enhancers, which we call bilaterian conserved regulatory elements (Bicores). Bicores show conservation of sequence and gene synteny. Sequence conservation of Bicores reflects conserved patterns of transcription factor binding sites. We predict that Bicores act as response elements to signaling pathways, and we show that Bicores are developmental enhancers that drive expression of transcriptional repressors in the vertebrate central nervous system. Although the small number of identified Bicores suggests extensive rewiring of cis-regulation between the protostome and deuterostome clades, additional Bicores may be revealed as our understanding of cis-regulatory logic and sample of bilaterian genomes continue to grow.
Monday, August 6, 2012
Dynamic histone marks in the hippocampus and cortex facilitate memory consolidation
Dynamic histone marks in the hippocampus and cortex facilitate memory consolidation
Nature Communications 3, 991 (2012). doi:10.1038/ncomms1997
Authors: Johannes Gräff, Bisrat T. Woldemichael, Dominik Berchtold, Grégoire Dewarrat & Isabelle M. Mansuy
A map of the cis-regulatory sequences in the mouse genome
A map of the cis-regulatory sequences in the mouse genome
Nature 488, 7409 (2012). doi:10.1038/nature11243
Authors: Yin Shen, Feng Yue, David F. McCleary, Zhen Ye, Lee Edsall, Samantha Kuan, Ulrich Wagner, Jesse Dixon, Leonard Lee, Victor V. Lobanenkov & Bing Ren
The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 109 bases of the mouse genome possess a high degree of conservation with the human genome, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences, but on its own it cannot resolve their temporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300,000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters. Our results provide a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.
A complete insect from the Late Devonian period
A complete insect from the Late Devonian period
Nature 488, 7409 (2012). doi:10.1038/nature11281
Authors: Romain Garrouste, Gaël Clément, Patricia Nel, Michael S. Engel, Philippe Grandcolas, Cyrille D’Haese, Linda Lagebro, Julien Denayer, Pierre Gueriau, Patrick Lafaite, Sébastien Olive, Cyrille Prestianni & André Nel
After terrestrialization, the diversification of arthropods and vertebrates is thought to have occurred in two distinct phases, the first between the Silurian and the Frasnian stages (Late Devonian period) (425–385 million years (Myr) ago), and the second characterized by the emergence of numerous new major taxa, during the Late Carboniferous period (after 345 Myr ago). These two diversification periods bracket the depauperate vertebrate Romer’s gap (360–345 Myr ago) and arthropod gap (385–325 Myr ago), which could be due to preservational artefact. Although a recent molecular dating has given an age of 390 Myr for the Holometabola, the record of hexapods during the Early–Middle Devonian (411.5–391 Myr ago, Pragian to Givetian stages) is exceptionally sparse and based on fragmentary remains, which hinders the timing of this diversification. Indeed, although Devonian Archaeognatha are problematic, the Pragian of Scotland has given some Collembola and the incomplete insect Rhyniognatha, with its diagnostic dicondylic, metapterygotan mandibles. The oldest, definitively winged insects are from the Serpukhovian stage (latest Early Carboniferous period). Here we report the first complete Late Devonian insect, which was probably a terrestrial species. Its ‘orthopteroid’ mandibles are of an omnivorous type, clearly not modified for a solely carnivorous diet. This discovery narrows the 45-Myr gap in the fossil record of Hexapoda, and demonstrates further a first Devonian phase of diversification for the Hexapoda, as in vertebrates, and suggests that the Pterygota diversified before and during Romer’s gap.
A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions
Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryoti....
Thursday, August 2, 2012
[Brevia] Explosive Backpacks in Old Termite Workers
Authors: J. Šobotník, T. Bourguignon, R. Hanus, Z. Demianová, J. Pytelková, M. Mareš, P. Foltynová, J. Preisler, J. Cvačka, J. Krasulová, Y. Roisin
WntA shapes butterfly wing pattern diversity [Evolution]
LSD1/CoREST molecular recognition dynamics [Chemistry]
Topology and Dynamics of the Zebrafish Segmentation Clock Core Circuit
by Christian Schröter, Saúl Ares, Luis G. Morelli, Alina Isakova, Korneel Hens, Daniele Soroldoni, Martin Gajewski, Frank Jülicher, Sebastian J. Maerkl, Bart Deplancke, Andrew C. Oates
During vertebrate embryogenesis, the rhythmic and sequential segmentation of the body axis is regulated by an oscillating genetic network termed the segmentation clock. We describe a new dynamic model for the core pace-making circuit of the zebrafish segmentation clock based on a systematic biochemical investigation of the network's topology and precise measurements of somitogenesis dynamics in novel genetic mutants. We show that the core pace-making circuit consists of two distinct negative feedback loops, one with Her1 homodimers and the other with Her7:Hes6 heterodimers, operating in parallel. To explain the observed single and double mutant phenotypes of her1, her7, and hes6 mutant embryos in our dynamic model, we postulate that the availability and effective stability of the dimers with DNA binding activity is controlled in a “dimer cloud” that contains all possible dimeric combinations between the three factors. This feature of our model predicts that Hes6 protein levels should oscillate despite constant hes6 mRNA production, which we confirm experimentally using novel Hes6 antibodies. The control of the circuit's dynamics by a population of dimers with and without DNA binding activity is a new principle for the segmentation clock and may be relevant to other biological clocks and transcriptional regulatory networks.
Systematic Dissection of Roles for Chromatin Regulators in a Yeast Stress Response
by Assaf Weiner, Hsiuyi V. Chen, Chih Long Liu, Ayelet Rahat, Avital Klien, Luis Soares, Mohanram Gudipati, Jenna Pfeffner, Aviv Regev, Stephen Buratowski, Jeffrey A. Pleiss, Nir Friedman, Oliver J. Rando
Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants) and enzymes (chromatin modifier deletions) we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the “activating” mark H3K4me3 in gene repression.
Wednesday, August 1, 2012
Transcription initiation by human RNA polymerase II visualized at single-molecule resolution [Research Papers]
Forty years of classical biochemical analysis have identified the molecular players involved in initiation of transcription by eukaryotic RNA polymerase II (Pol II) and largely assigned their functions. However, a dynamic picture of Pol II transcription initiation and an understanding of the mechanisms of its regulation have remained elusive due in part to inherent limitations of conventional ensemble biochemistry. Here we have begun to dissect promoter-specific transcription initiation directed by a reconstituted human Pol II system at single-molecule resolution using fluorescence video-microscopy. We detected several stochastic rounds of human Pol II transcription from individual DNA templates, observed attenuation of transcription by promoter mutations, observed enhancement of transcription by activator Sp1, and correlated the transcription signals with real-time interactions of holo-TFIID molecules at individual DNA templates. This integrated single-molecule methodology should be applicable to studying other complex biological processes.