Connectomics, the generation and analysis of neuronal connectivity data, stands to revolutionize neurobiology just as genomics has revolutionized molecular biology. Indeed, since neuronal networks are the physical substrates upon which neural functions are carried out, their structural properties are intertwined with the organization and logic of function. In this paper, we report a near-complete wiring diagram of the nematode Caenorhabditis elegans and present several analyses of its properties, finding many nonrandom features. We give novel visualizations and compute network statistics to enhance understanding of the reported data. We also use principled systems-theoretic methods to generate hypotheses on how biological function may arise from the reported neuronal network structure. The wiring diagram reported here can further be used to generate predictions about signal propagation in future perturbation, ablation, or artificial stimulation experiments.
"
No comments:
Post a Comment